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In the present work, we investigate the optimization of the heat transfer from wavy fins cooled by a lam-
inar flow under conditions of forced convection and from a multi-objective point of view. The problem is
addressed by means of a finite element method which allows to compute the velocity and the tempera-
ture distributions in a finned conduit cross section under conditions of imposed heat flux. Thereafter, the
fin profile is optimized by means of multi-objective genetic algorithm which aims to find geometries that
maximize the heat transfer and, at the same time, minimize the hydraulic resistance. The geometry of the
fins is parameterized by means of a polynomial function and several order are investigated and

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In many engineering fields, finned dissipators are an invaluable
tool to remove heat in particular where high fluxes must be trans-
ferred. A typical use of such a heat exchanger can be found in the
electronic industry where components must be cooled in order
to ensure both performance and reliability. Moreover, the temper-
ature of an electronic component must be lowered considering also
the exigence of reducing the energy consumption of cooling fans
and reducing the volume of the device. For example, the former
exigence is connected with the customer requirement of long bat-
tery endurance. Whereas, the latter exigence is related to the
weight and to the volume of the device. In recent years in fact,
the electronic industry has developed smaller and smaller compo-
nents and the heat dissipators for them must consequently be
scaled. Another reason that lead to the reduction of the finned dis-
sipator volume is the necessity of lowering the amount of material
used in the device. In fact, as reported by the LCA Committee of the
Japanese aluminum industry [1] and recalled by Bar-Choen and
Iyengar [2], the estimated amount of aluminium used for cooling
electronic devices was of about 10 Million-kg in 2001. Although,
we have focused only in the electronic field so far, similar consid-
erations can be easily made in all fields were heat dissipators play a
fundamental role.

The problem of the optimization of longitudinal fins has been
studied by many researchers in the last century [3-6]. In particular
several fin profiles have been suggested and undulated fins have
shown the best performances in terms of heat transfer [8,7]. How-
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ever, the optimum fin shape has been solved only partially. In fact,
a criterion for detecting the optimal geometry has been proposed
by Fabbri[9,10] where a genetic algorithm has been employed to de-
tect the geometry that ensures the highest heat transfer. However, as
just pointed out the optimum geometry itself may not be useful since
limits in the hydraulic resistance or in the volume of the fins may also
arise. Although, the genetic algorithm previously used can be em-
ployed considering constraints in the hydraulic resistance, the value
of such limits is typically unknown a priori. Hence, a different ap-
proach should be used and in this case multi-objective optimization
techniques are suitable methods since their application together
with genetic algorithms permits to detect rapidly the set of solutions
that optimize all the objectives of interest.

Although, these techniques have been developed since the mid-
1980s, their usage in the heat transfer field is recent and not com-
mon. In particular, Hilbert et al. [11] performed a multi-objective
shape design optimization of a tube bank heat exchanger whereas,
Nobile et al. [12] studied convective periodic channels.

In the present work, we investigate the optimization of heat
transfer through finned dissipators by means of a multi-objective
genetic algorithm where the two objectives considered here are
the maximization of the heat transfer and, at the same time, the
minimization of the hydraulic resistance. Since the two objectives
are conflicting, the result of the genetic algorithm is a set of opti-
mal solutions each of them lying on a trade-off curve called Pareto
front. The same methodology is then applied considering different
constraints in the volume of the fins. Finally, we want to investi-
gate how the irreversibility of the heat transfer and fluid flow pro-
cesses influences the geometries lying on the trade-off curve.
Specifically, this last analysis is carry out by minimizing the entro-
py generation rate and maximizing the heat transfer.
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Nomenclature

a fin height (m)

b fin base thickness (m)

Cp specific heat of the coolant (J/kg K)

D individual density

d distance between the fin base thickness and the oppo-
site flat wall (m)

e width of the portion of conduit section (m)

F individual fitness

f half-width of the fins (m)

h global heat transfer coefficient (W/m? K)

ke thermal conductivity of the coolant (W/mK)

ks thermal conductivity of the finned plate (W/mK)
N population size

n polynomial order

Nu, equivalent Nusselt number

p generalized pressure (N/m?)

q" heat flux per unit surface uniformly imposed on the

finned plate (W/m?)
R individual raw fitness
S individual strength
T bulk temperature of the coolant (K)

Tc temperature of the coolant (K)

Ty temperature of the finned plate (K)

Timax maximum temperature of the cooled surface (K)
u velocity of the coolant (m/s)

we total coolant volume flow rate (m3/s)

X longitudinal coordinate (m)

y coordinate parallel to fin height (m)

z coordinate orthogonal to fin height (m)

Greek symbols

normalized height of the fins, a/d

normalized thickness of the finned plate base, b/d
normalized width of the portion of conduit section, e/d
normalized coordinate parallel to fin height, y/d
ratio of finned plate to coolant conductivity, ks/k.
dynamic viscosity (Pa s)

normalized half-width of the fins, f/d

fin profile describing parameters

polynomial coefficients

coolant density (kg/ m®)

normalized hydraulic resistance, defined by Eq. (6)
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2. Governing equations and dimensioning criteria

Let us consider a conduit composed by a finned plate opposite
to a flat surface, both of them infinitely long and wide. The flat sur-
face is thermally insulated while a constant heat flux q” is applied
to the finned plate bottom. The coolant flows in the conduit paral-
lel to the fins. All conduit fins are identical and the sections orthog-
onal to the flow direction have two symmetry axes (see Fig. 1).

Since the present work considers an optimization technique
that employs a large number of individuals in order to correctly
solve the problem, the simplicity of the model is mandatory. In
fact, for the test cases considered (cf. Section 4) a population of
100 individuals that reproduces for 100 generations have to be
considered in order to detect the real Pareto front. Therefore, a to-
tal number of 10000 cost functions evaluations is required. For
such a large number of individuals, the usage of time consuming
solvers is not allowed in order to obtain results within a reasonable
time. For this reason, in the present work we introduce the follow-
ing hypotheses and considerations:

the fluid flow is laminar and incompressible;

the system is in steady state;

velocity and temperature are fully developed;

fluid and solid properties are uniform and fluid independent;

flat surface

finned plate  f14id flow portion

q"

Fig. 1. Finned conduit.

e natural convection is negligible in regard to the forced
convection;
e viscous dissipation is negligible.

The heat transfer performance of the system can be studied
considering only a portion of it which is delimited by the finned
plate bottom, the top flat surface, and two symmetry axes (see
Fig. 2). Let us choose an orthogonal coordinate system where the
x axis is parallel to the streamwise direction, the y axis is perpen-
dicular to the flat plate while the z direction is parallel to it. As
shown in Fig. 2, let a be the fin height, b the fin base thickness, e
the distance between the two symmetry axes, and d the distance
between the fin base and the flat surface.

Under such conditions, only the x component u of the fluid
velocity is non-zero and it can be determined solving the corre-
sponding component of the momentum equation:

Pu Pu 19

CALRL A (1)
ay (074 H Ox

where u is the dynamic viscosity and p the pressure. Two kind of

boundary conditions are needed to solve Eq. (1). The former is the
no-slip condition considered at the walls (i.e., u = 0). The latter con-
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Fig. 2. Computational domain.
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sists of the zero velocity partial derivative at the symmetry axes
along the normal direction (i.e., 2 = 0).

Since the applied heat flux is uniform and the thermal profile is
fully developed, the temperatures of the fluid and the solid change
linearly with the x coordinate. The conductive heat flux is constant
and can be neglected in an overall energy balance. Therefore, the
temperature distribution in the coolant is described by the follow-
ing relationship:

oT O*T. T
pcpu J =k { ay; 8226}

(2)

where p is the density, ¢, the specific heat, and k. the thermal con-
ductivity of the coolant.

The temperature distribution inside the finned plate is instead
described by the Laplace equation:

*T; Ty
om0 G)

Egs. (2) and (3) must be integrated imposing the following bound-
ary conditions:

e on the contact surface, the temperature is the same in the solid
and in the fluid;

e on the contact surface, the heat flux in the normal direction is
the same in the solid and in the fluid;

e on the symmetry axes and on the insulated wall, the heat flux in
the normal direction must be zero;

e on the finned plate bottom surface, the heat flux must be equal
to q” and parallel to the y direction.

Lastly, the value of the temperature in one point of the section is
needed.

Egs. (1)-(3) are here solved numerically by means of the finite
element code previously used and tested by Fabbri [9].

In order to evaluate the heat transfer performance of the finned
conduit some definitions are given here. For the system described,
the following global heat transfer coefficient can be defined as

B q//
h= Tmax - Tb (4)

where T4 is the maximum temperature on the surface on which q” is
imposed and T}, is the bulk temperature of the fluid. The temperatures
Tmax and T, must be calculated at the same value of the x coordinate.
Moreover, it is possible to define an equivalent Nusselt number:

2hd
Nue = 7= ()

which corresponds to the Nusselt number, which would be calcu-
lated if the same heat flux g” were dissipated through a flat surface
with zero thickness at the distance d from the insulated surface.

Moreover, the normalized hydraulic resistance is considered in
the optimization:

—dp/dx /12u
w/e | £

which indicates how many times the hydraulic resistance per unit
of length and width of the conduit increases due to the presence
of the fins.

Another interesting parameter that can be optimized is the en-
tropy generation through the system which takes into account the
irreversibility of the heat transfer and fluid floe processes. Follow-
ing Bejan [20], the volumetric rate of entropy generation is

S"”—Ii £2+ ﬂ2+ gz
gen 2 |\ 9x ay 0z

(6)

(=

+Lo (7)

where ¢ is the viscous dissipation function. The dimensionless form
of Eq. (7) allows to obtained the dimensionless entropy generation
number as

2
en kﬂ
q//2

where Sgen is the mean value of the entropy over the conduit section.
The computational domain geometry is described by the
parameters a, b, d, e and the fin profile function g(y). Taking
d as reference length, we obtain the following dimensionless
variables:
_a L, b e sy .y
Let us assign a polynomial form to the profile function ¢:

Ns = Sg 8)

n=> v (10)
i=0

the function ¢(#) is univocally determined by the n + 1 parameters
y; or, alternatively, by n + 1 values of ¢ in equidistant points on the
n axis, namely:

¢i:¢(%a> (11)

Since changes in ¢; induce in ¢(#) variations of more compara-
ble entity then do changes in ;, the first ones are preferable as fin
profile describing parameters instead of the latter ones. Moreover,
the average half-width of the fin ¢ results

Wil d)o, Vildo, - Pn) i
b3, bty 1)
Hence, we can express the average thickness of the finned plate ¢ as
o-p+22 (13)

This parameter is representative of the volume and the weight of
the finned plate.

From these definitions, the optimization of a finned plate can be
addressed aiming to maximize the Nusselt number and, at the
same time, minimizing the hydraulic resistance or minimizing
the entropy generated. Moreover, the average thickness can be
constrained to an established value G, in order to limit the volume
of the fins. To this aim the parameters € and ¢; can be reproduced
by means of opportune genetic operations whereas, the value of
can be forced to assume the value

p=00-29 (14)

In this way, f can be negative or too small. If that occurs, ¢; can
be resized or the parameter combination can be rejected by assign-
ing a null value to the Nusselt number and an infinite value to the
hydraulic resistance.

3. Multi-objective optimization

To describe a multi-objective optimization let us consider a vec-
tor function f which maps a vector variable x of parameters to a
vector y of objectives. Formally, the problem of optimizing y can
be written as

min/max y = f(x) = (fi(x)),2()),- . fa(x))) (15)
subject to g(x) = (g;(x )7gz( )7"'7gs( ) <0 (16)
where X = (x1,x2,...,X )eX (17)

Yy=0U1Y2 V) € (18)
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and g(x) indicates the constraints that the system is subject to, x is
called the decision vector, X is the parameter space, y is the objective
vector, and Y is the objective space.

A set of decision vectors constitutes a solution to a multicriteria
optimization problem if it agrees with the concept of Pareto opti-
mum that was formulated by Vilfredo Pareto [13] and it constitutes
the basis in multi-objective optimization. In order to explain the
concept of Pareto optimality, let us assume, without loss of gener-
ality, a maximization problem and let us consider two decision
vectors a, b € X. Then, a is said to dominate b (according to Zitzler
and Thiele [14], written a = b) if and only if

Viel,2,...,n:fia) = fi(b)A
Je1,2,...,n:£(a) > f(b) (19)

All decision vectors which are not dominated by any other deci-
sion vector of a given set is called non-dominated regarding to this
set. Whereas, all decision vectors that are non-dominated within
the entire search space are denoted as Pareto optimal and constitute
the so called Pareto optimal set. The corresponding objectives in-
stead constitute the Pareto optimal front in the objective space.

The two objective functions considered in the present work are
the Nusselt number Nu, and the normalized hydraulic resistance .
The first is to be maximized whereas the latter is to be minimized.
Following the concept of Pareto optimality, the solutions searched
must have the characteristic that it is not possible to increase its
Nusselt number without increasing { at the same time or, in other
words, it is not possible to reduce the normalized hydraulic resis-
tance without decreasing Nu, at the same time. Furthermore, the
parameters € and ¢; are the components of the decision vector. An-
other kind of analysis carried out in the present work consists on
the minimization of the entropy generated together the maximiza-
tion of the heat transfer.

In order to detect the Pareto optimal front, in the present work we
used the Strength Pareto Evolutionary Algorithm 2 (SPEA2) devel-
oped by Zitzler etal. [15] in 2001. The algorithm starts with an initial
population P of N individuals, and create an external empty set P. At
each generation t, the value of a function F(i) called fitness is com-
puted (cf. Section 3.1) for each element in P, and P,. Thereafter, all
non-dominated individuals in P; and P; are copied to the external ar-
chive of the subsequent generation P, ;. If the number of elements in
P, exceeds its maximum allowed size N, P, ; is reduced by means
of a truncation operator. Otherwise, if the size of P, is less than N,
then P, is filled with the dominated solution with lower value of
F(i). The external population is then let to reproduce (cf. Section
3.2)in order to have a new population to evaluate and the algorithm
continues until a stopping criteria is satisfied.

Since the fitness value will be important to understand the ge-
netic operators employed here, it is deeply recalled in the following
whereas the reader can have an exhaustive explanation of the
truncation operator in the original paper of Zitzler et al. However,
it is worth noting that the main feature of the truncation operator
consists in eliminating solutions that are too close to others with-
out removing boundary elements of the Pareto front (i.e., global
optima) and it allows to obtain well sampled fronts.

3.1. Fitness assignment

In order to compute the fitness, three values for each individual
i must be first calculated: the strength S(i), the raw fitness R(i) and
the density D(i). Firstly, Zitzler and Thiele [14] define the strength
of the ith individual S(i) as the number of solutions it dominates:

S@i) = |{jli € Pc + P A = j}| (20)

where | - | indicates the cardinality of the set, + stands for the mul-
tiset union and the symbol > corresponds to the Pareto dominance

relation. Once the strength is evaluated, the value of the raw fitness
of the individual i can be computed as the sum of the strengths of its
dominators:

Ri)= > SG) (21)

JEP+P j-i

In order to illustrate how the strength and the raw fitness assign-
ment works, in Fig. 3 these values are reported close to each element
of a population. The problem depicted consists in maximizing both
the cost function f; and the cost function f,.

Since elements lying near the Pareto front should be more prob-
ably preferred during reproduction, then elements with lower raw
fitness values will be chosen with a higher probability than indi-
viduals with higher values of R(i). However, further information
must be also included in order to discriminate between individuals
with the same values of R. This can be done including information
about individual density in the objective space to the raw fitness
value. The density estimation technique provided in SPEA2 by Zit-
zler and Thiele [14] consists in an adaption of the kth nearest
neighbor method [16]. In particular, for each element i the distance
between it and all the other individuals in the objective space is
stored in a list. After having sorted this list in ascending order,
the kth distance ¢, is chosen. The value of k is equal to the square
root of the sample size:

k=VN+N (22)

The density of the ith individual is then defined by the following
relation

D(i) = "

Tk y2 @3

Finally, the fitness value of the ith individual can be computed as
F(i) = R(i) + D(i) (24)

When the algorithm copies the non-dominated solution to the
external archive, it chooses the elements with value of fitness lower
than one. If the number of non-dominated individuals is lower than
the maximum number of external elements, then the archive is
filled by means of dominated individuals with the lower value of fit-
ness. By the definition of Zitzler and Thiele [14], the fitness function
of an element will always be grater than zero and the lower the va-
lue of the fitness the better will be the corresponding individual.

7+ 02/0 i

6 ®1/2 B

S 4 @3/0 i
3t 023 , i
2r ol 02/0

1+ @0/11 i

Fig. 3. Strength S(i) and raw R(i) fitness assignment of the SPEA 2. Both F, and F,
are to be maximized. Points are plotted with S(i)/R(i) near the ith individual.
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Moreover, the fitness value is important to select elements for the
reproduction and, in the present work, it is used also in the repro-
duction process itself as described in the following.

3.2. Mating scheme and genetic operators

In order to create a new population to evaluate, two individuals
are selected from the external population. The element with the
lower value of the fitness is then chosen as the first parent. The sec-
ond parent is selected similarly as the previous one.

Once the two parents are selected, they are removed from the
external population and they generate two offspring. The way that
two parents reproduce themselves is a key issue in a genetic algo-
rithm. The crossover here used is based on concept that informa-
tion provided by the SPEA2 about density and dominance of
individuals can be employed in order to search in regions of the
objective space that have been poorly investigated by the algo-
rithm in previous generations. To illustrate how this genetic oper-
ator works, let us consider two parents P; and P, with fitness
values F; and F,, respectively. Moreover, let us assume that F; is
lower than F, and that both F; and F, are less than zero (i.e., both
P; and P, are on a Pareto front). This means that P; belongs to a
region less crowded than the region of P,. In such a case, the genet-
ic algorithm is preferred to investigate closer to P, rather than P,.
In the case that F, is greater than one, once again the genetic algo-
rithm should search closer to P, than to P,. Moreover, the repro-
duction process should not only take into account if one of the
fitness is lower than the other, but it should also consider how
much these two values are different one to each other. To this
aim, each couple of parents simply generates two offspring (0,
and 0,) in the following way:

5, = <F2P1+F1P2> (25)
R F,z F
0y =4 <F2 P, - F—1P2> (26)

where / is a random number between [0, 1] and it has been as-
sumed that F; < F,. The generated offspring together their parents
are shown in Fig. 4 and considering that individuals have a number
of two variables (x and y). Moreover, in the present work a floating-
point representation of individuals has been considered.

Lastly, in order to avoid the genetic algorithm to stuck on sub-
optimal Pareto fronts (or in local optima when considering single
objective optimization) the routine is forced to investigate other
regions of the objective space by means of a mutation operator.
The mutation operator used in the present work consists in ran-
dom changes in some components of a certain percentage of the
decision vectors of the external population.

4. Test function: the Poloni test case

The SPEA2 has been tested on many mathematical problems. All
the test cases reported in [17] and in [18] have been successfully
solved. However, we here report only the results regarding the Po-
loni test case since it demonstrated to be the hardest to solve.

y ﬁZ o1

ol

02

Fig. 4. Offsprings 0, and 6, generated by two parents P, and P, in the case of F,
lower than F,.

The problem here presented consists in minimizing the follow-
ing functions:

t(xy)=1+(@-by+(c—dy (27)

LxY)=x+3)°+y+1) (28)

where

x,y€[-m,mn (29)

and the parameters presented in F; are

a = 0.5sin(1) — 2.0cos(1) + 1.0sin(2) — 1.5co0s(2) (30)

b = 0.5sin(x) — 2.0cos(x) + 1.0sin(y) — 1.5cos(y) (31)

¢ = 1.5sin(1) — 1.0cos(1) + 2.0sin(2) — 0.5cos(2) (32)
= 1.5sin(x) — 1.0cos(x) + 2.0sin(y) — 0.5cos(y) (33)

Fig. 5 shows the objective space obtained by sampling each of the
variables x and y by means of 64 uniformly spaced points (corre-
sponding to a grid of 64 x 64 points).

In order to face a more significant test, the two variables are di-
vided into nine components as follows:

%3 €[] 34
x=3x, (35)
i=1
9
y=> (36)

Jj=1

The resulting dimension of the optimization problem is of 18
variables and two objectives. In the case analyzed here, we have
tested all the genetic operators previously described and consider-
ing several runs of the genetic algorithm. A population size of 100
individuals and an external population of 50 individuals has been
chosen. Moreover, a mutation probability of the 5% has been se-
lected. In Fig. 6 the sampled real Pareto front is depicted together
with the Pareto front detected by the SPEA2 considering a popula-
tion of 100 individuals, an external population of 50 individuals,
and running for 100 generations. Fig. 7 shows the mean conver-
gence history obtained in 50 runs of the SPEA2 with randomly gen-
erated starting populations. The convergence has been computed
considering the convergence metric C(P) suggested by Deb and Jain

60 T T T T T T

t2(x7y)

t1(33’y)

Fig. 5. 64 x 64 sampling of the objective function in the objective space. (Points
marked with e correspond to the Pareto front).
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t2($’y)
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00 2 4 6 8 10 12 14 16 18

t1(2,y)
Fig. 6. Approximated Pareto front obtained running SPEA2 with 100 individuals, 50

external individuals, and for 100 generations. () Sampled Pareto front; (A) Pareto
front detected by SPEA2.

C(P)

O i i I I
10 20 30 40 50

generations

Fig. 7. Mean convergence history of the SPEA2 used in the Poloni test problem
obtained in 50 runs.

[19], which measures the average Euclidean distance between an
approximation set and a reference set (i.e., the sampled Pareto
front). Such a metric is equal to zero only when the non-dominated
elements exactly match the reference points which is almost

impossible. For this reason in Fig. 7 the metric do not reaches the
null value within 50 generations. However, it can be seen that the
algorithm employed is particularly fast in finding the Pareto front
of the test case presented.

5. Results

The SPEA2 algorithm has been employed to optimize the geom-
etry previously studied by Fabbri [10]. Only three values of the
polynomial order n of the fin profile function have been studied
here, namely

n=0,024 (37)

The parameters set up of the algorithm used to optimize the fins
is listed below:

e population size, = 100;
e external population size, P = 50;
e maximum number of generation, t;. = 100.

For the finite element method, a grid with 20 x 80 elements
(21 x 81 nodes) was used. More finer grids have been tested with-
out finding any significant variation in Nu,. In the test cases, a grid
of 35 x 80 elements caused changes in Nu, of less than 0.5%
whereas, a grid of 20 x 110 elements produced alterations in Nu,
of less than 0.7%. Moreover, the normalized fin height o has been
considered equal to 0.75 and the thermal conductivity ratio y equal
to 300. Such a value of y corresponds to the case of a copper finned
plate cooled by water. The remaining geometrical parameters has
been allowed to vary between the following values:

0.001 < p<0.2 (38)
0.05<€e<0.6 (39)
0.001 < ¢; <€ (40)

In Table 1, parameters on the left of the vertical line have been
imposed, while those on the right have been found by the genetic
optimization algorithm.

5.1. Optimization without constraints

Fig. 8 shows the Pareto fronts related to the three cases here
analyzed. It can be seen that for all the polynomial orders con-
sidered, the maximum Nusselt Number agrees with data re-
ported by Fabbri [10]. Moreover, all the cases tested has
detected the Pareto front in much fewer generations than tpg.
In particular, the 4th polynomial order has been the most com-
plex to solve since the resulting number of variables was equal
to seven. In that case, the Pareto front has been detected and
well sampled within 40 generations. Whereas, the rectangular
fin shape and the parabolic fin profile have been solved within
20 and 30 generations, respectively. The analysis has been lim-
ited to the detection of the maximum Nusselt number since

Table 1

Geometries that ensure a reduction of about 20% of the hydraulic resistance of maximum heat transfer geometries.

o n o B € $o 1 $3 (2 Nu S ANue(%) AL(%)
0.75 0 0.256 0.0861 0.2085 0.0472 - - - - 57.66 12.31 4.1 23
0.75 2 0.322 0.1304 0.2036 0.0815 0.0272 0.1225 - - 77.46 15.50 5.8 24
0.75 4 0.276 0.1043 0.1958 0.0915 0.0375 0.0322 0.0254 0.1426 82.93 16.00 4.7 20
0.75 0 0.200 0.0710 0.1923 0.0331 - - - - 56.03 11.96 4.5 22
0.75 2 0.200 0.0380 0.1982 0.0751 0.0191 0.1055 - - 72.50 14.31 5.6 23
0.75 4 0.200 0.0472 0.1978 0.0943 0.0337 0.0350 0.0152 0.1405 79.97 15.17 6.7 23
0.75 0 0.100 0.0244 0.1805 0.0182 - - - - 48.80 10.83 4 21
0.75 2 0.100 0.0144 0.1874 0.0371 0.0118 0.04 - - 52.70 11.04 5 23
0.75 4 0.100 0.0158 0.1855 0.0469 0.0129 0.0143 0.0103 0.0903 59.74 12.37 53 22
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Fig. 8. Pareto fronts of the unconstrained cases. () Rectangular fins, (M) parabolic
fins, (A) 4th order fins.

Velocity
¢ =4.27; Nu, = 28.77
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Fig. 9. Velocity distributions in the transversal section for n = 2, « = 0.75. Curves
are drawn every 10% of the maximum velocity.

¢ =20.29; Nu, = 82.23

Fabbri [10] demonstrated that those geometries that maximize
the fin efficiency also maximize Nu,. Therefore, the fin efficiency
has not been considered here.

A first important consideration that can be made on the basis of
the present results concerns with global optimum geometries. In
fact, it can be clearly seen that there are profiles that provide good
performance in terms of heat exchange but, at the same time, are
also able to provide a sensible reduction of the hydraulic resis-
tance. In Table 1, profiles that provide the maximum heat transfer
with a reduction of the hydraulic resistance of at least the 20% are
listed. For all the unconstrained geometries, the Nusselt number
decrease ranges between 4.1% and 5.8% whereas, the { has a reduc-
tion that ranges between 20% and 24%.

If it is of interest the maximum heat transfer, Fabbri [10]
pointed out that optimum geometries are based on a compromise

between two exigencies. The first consists in having, in the cavities
between the fins, velocities which are comparable with those at fin
tip or higher. In fact, higher velocity near the fin tip causes higher
thermal gradients in this region, which would lower the bulk tem-
perature without enhancing the heat transfer from the plate base
and the lateral surface on the fin. The second exigence consists in
maintaining the maximum velocity as close to the dissipator as
possible in order to relatively increase the thermal gradient. As a
consequence of the first exigence, fins cannot be too closely spaced,
for the second one they cannot be too sparse. When dealing with
Pareto optimal solutions, the balance between the two exigencies
progressively change. In particular, since here we are interested
in minimizing the hydraulic resistance, the individuals belonging
to the Pareto front exhibit the tendency of having larger cavities

Temperature
¢ =4.42; Nu, = 29.86
Z/d 04F T T T T T T 7

-0.2 0 6.2 6.4 0.6 0.8 1 1.2
¢ =20.14; Nu, = 87.05

Fig. 10. Temperature distributions in the transversal section for n =4, o« = 0.75.
Curves are drawn every 10% of the difference between the maximum and the
minimum temperature.

20 T T T T T T T
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0 ; ; ; ; ; : ;

10 20 30 40 50 60 70 80 90
Nu,

Fig. 11. Pareto fronts in case of constrained solid volume 6, = 0.2. () Rectangular
fins, (M) parabolic fins, (A) 4th order fins.



1174 D. Copiello, G. Fabbri/International Journal of Heat and Mass Transfer 52 (2009) 1167-1176

70

Fig. 12. Pareto fronts in case of constrained solid volume 6, = 0.1. () Rectangular
fins, (M) parabolic fins, (A) 4th order fins.

between the fins as the parameter { decreases. This can be deduced
from Fig. 13 where four cases belonging to the Pareto front of n = 4
are depicted. From this figure, it can be seen that the fin spacing
progressively decreases as the Nusselt number increases. Also the
fin profile changes since the fin tip tends to extend toward the cen-
ter of the channel between the fins. In fact, higher order profiles
that maximize the Nusselt number force the maximum velocity

¢ = 4.42; Nu, = 29.86

0 015 1
y/d

¢ = 17.21; Nu, = 84.43
1 T <

0.5t g
z/d —

(Ui ’F;*/”;—i *****
0 015 1
y/d

to occur between the fins. Such a behavior induces higher thermal
gradients near the finned plate base and the fin lateral surface. At
low hydraulic resistance, the fin tips are thinner and the maximum
velocity progressively occurs at higher values of the normalized
coordinate 7 (see Fig. 9) . As consequence of having thinner fin tips
and larger cavities, the performance of wavy fins are not much dif-
ferent from those obtained with rectangular fins and the Pareto
fronts overlap at low (. In other words, if a designer is interested
in cases where the constraint imposed in { is particularly stringent,
the employment of corrugated fins is not useful to improve the
heat transfer coefficient. Such an effect can be clearly seen in
Fig. 8 where the curves related to the geometries analyzed here
overlap if { < 6. Moreover, parabolic and 4th order fins provide
similar performance if { < 10. This is of fundamental role if also
manufacturing exigencies are taken into account since rectangular
fins are easier to realize. On the other hand, complex fin profiles
are more expensive to realize than rectangular devices but the
manufacturing cost of these complex fins can be easily gained
thanks to lower usage costs (Fig. 10).

5.2. Optimization with constrained volume

In practice, in the optimization of a particular geometry, some
constraints may also arise. In the application presented here, a typ-
ical constraint can be the solid volume of the device. In the present
analysis, we set up two different values of the average thickness of
the finned plate, namely 6o = 0.2 and 6, = 0.1.

Figs. 11 and 12 show the Pareto fronts for the two limits consid-
ered and for the three geometries optimized here. In all cases the
constraint entail a reduction of the heat transfer as already pointed

¢ =9.70; Nu, = 60.31

] /—/—\‘
0.5} ]
z/d
0, 4
0 05 1
y/d
¢ =20.15; Nu, = 87.07
: — N
.
—
0.5} -

2/d —

0r ‘*F;;i ***** ]
0 05 1
y/d

Fig. 13. Optimum geometries for n = 4.
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Fig. 14. Optimum geometries for n = 4 with a constrained solid volume 6, = 0.1.
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Fig. 15. Pareto fronts for the optimization of the entropy generation. (Q)
Rectangular fins, (M) parabolic fins, (A) 4th order fins.

out by Fabbri [10]. However, the same consideration of the uncon-
strained study can sentenced be here. In fact, in all cases there are
geometries that provide good performances in terms of heat trans-
fer and, at the same time, provide a significant reduction of the
parameter { (see Table 1). Moreover, in all cases, constrained and
unconstrained, the three Pareto front overlap when Nu, is lower
than 40.

5.3. Optimization of the entropy generation

Another interesting parameter to be minimized together the
maximization of the heat transfer is the entropy generated. Spe-
cifically, the parameter optimized is the entropy generation
number (see Eq. 8). Geometries with lower Ns and higher Nu,
are thermodynamically advantageous since in addition to
enhancing the heat transfer they reduce the irreversibility of
the apparatus (Fig. 14).

Fig. 15 reports the Pareto fronts of the three type of profiles. It
can be seen that, for the parabolic and the 4th order polynomial
fins, a large reduction of N is present if Nu, decreases. Moreover,
for this type of parametrization, no solution is detected by the ge-
netic algorithm for values of the Nusselt number lower than about
70. This is due to the fact that geometries with low heat transfer
characteristics have also higher values of Ns. Therefore, they are
dominated solutions and they do not belong to the Pareto front.
The optimal frontier of rectangular fins is more complex than other
cases and the entropy generated varies in a non-trivial way as the
Nusselt number decreases. Finally, the analysis of geometries lay-
ing on the Pareto-front allows similar considerations that has been
formulated in the optimization of the pressure drop and the Nus-
selt number (i.e., the fin spacing decreases with an increment of
Nu,, as the Nusselt number decreases the fin tips become thinner,
etc.).

6. Conclusions

In the present work we applied the multi-objective approach to
the optimization of the heat transfer through finned heat dissipator
cooled by laminar flow. In particular we studied the optimal geom-
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etry of wavy fins described by polynomial functions and we
searched the parameter combinations that aim to maximize the
heat transfer and, at the same time, aim to minimize the hydraulic
resistance. The results are a set of solutions lying on a curve called
Pareto front and the analysis of this curve allows to find geometries
where the Nusselt number is slightly reduced but the hydraulic
resistance is appreciably lower than the one computed in the best
heat exchanger profile. Moreover, if the hydraulic resistance is lim-
ited to a particular stringent value, the adoption of wavy fins do
not improve the heat transfer of the device here analyzed.

In the present work we also studied the effect of a constrained
solid volume of the fins. The main effect, as expected, consists in a
reduction of the heat transfer. As in the unconstrained case, there
are geometries that provide a great reduction of the hydraulic
resistance without reducing the heat transfer.

It must also be remarked that the present analysis has been lim-
ited to cases where the fluid flow has been considered laminar and
fully developed. Therefore, the results presented here can be usefully
employed only in cases where the entrance region is short in respect
to the total length and where the Reynolds number is low.

Lastly, some remarks should be made regarding to the optimi-
zation process. The configuration of the SPEA2 employed here
can be too computationally expensive if applied to more complex
problems such as three-dimensional cases. Therefore, if the simu-
lation time of the single individual is relevant, the parallelization
of the genetic algorithm and the adoption of hybrid techniques
can significantly speed up the optimization process.
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